On monetary policy and stock market anomalies

Alex Kontonikas and Alex Kostakis

University of Glasgow

EFA 2010, Frankfurt
Presentation outline

- Motivation
Presentation outline

- Motivation
- Related Literature and Contribution
Presentation outline

- Motivation
- Related Literature and Contribution
- Data and Methodology
Presentation outline

- Motivation
- Related Literature and Contribution
- Data and Methodology
- Results
Presentation outline

- Motivation
- Related Literature and Contribution
- Data and Methodology
- Results
- Robustness checks
Motivation

Related Literature and Contribution

Data and Methodology

Results

Robustness checks

Conclusions
Recent global financial crisis has highlighted the importance of monetary policy for financial markets.
Recent global financial crisis has highlighted the importance of monetary policy for financial markets.

Under imperfect capital markets with financial frictions, monetary policy affects firms’ operations and valuations.
Recent global financial crisis has highlighted the importance of monetary policy for financial markets.

Under imperfect capital markets with financial frictions, monetary policy affects firms’ operations and valuations.

Transmission of monetary policy via:
Bank lending channel and balance sheet channel.
Recent global financial crisis has highlighted the importance of monetary policy for financial markets

Under imperfect capital markets with financial frictions, monetary policy affects firms’ operations and valuations

Transmission of monetary policy via:
Bank lending channel and balance sheet channel

Financial press and analysts closely follow central bankers to extract info regarding monetary policy stance
Well established literature documenting the negative impact of monetary tightening on stock market returns
Related Literature

- Well established literature documenting the negative impact of monetary tightening on stock market returns
- Plethora of methodological approaches to identify monetary policy shocks and to disentangle money demand from money supply effects
Related Literature

- Well established literature documenting the negative impact of monetary tightening on stock market returns

- Plethora of methodological approaches to identify monetary policy shocks and to disentangle money demand from money supply effects

- Jensen and Johnson (1995): Dummy approach
 Thorbecke (1997) and Patelis (1997): VAR approach
 Bernanke and Kuttner (2005): Futures on Fed Funds rate

- Very few studies examining the impact of monetary policy shocks in the cross-section of stock returns

Related Literature

- Well established literature documenting the negative impact of monetary tightening on stock market returns

- Plethora of methodological approaches to identify monetary policy shocks and to disentangle money demand from money supply effects

 - Jensen and Johnson (1995): Dummy approach
 - Thorbecke (1997) and Patelis (1997): VAR approach
 - Bernanke and Kuttner (2005): Futures on Fed Funds rate

- Very few studies examining the impact of monetary policy shocks in the cross-section of stock returns
Related Literature

- Well established literature documenting the negative impact of monetary tightening on stock market returns

- Plethora of methodological approaches to identify monetary policy shocks and to disentangle money demand from money supply effects

- Jensen and Johnson (1995): Dummy approach
 Thorbecke (1997) and Patelis (1997): VAR approach
 Bernanke and Kuttner (2005): Futures on Fed Funds rate

- Very few studies examining the impact of monetary policy shocks in the cross-section of stock returns

Motivation 2

 "The challenge is straightforward: We need to understand what macroeconomic risks underlie the “factor risk premia” that finance research uses to crystallize the cross section of assets. A current list might include the value and size premiums, the momentum premium."
“The challenge is straightforward: We need to understand what macroeconomic risks underlie the “factor risk premia” that finance research uses to crystallize the cross section of assets. A current list might include the value and size premiums, the momentum premium"

"Having said “macroeconomics”, “risk” and “asset prices”, the reader will quickly spot a missing ingredient: money"
“The challenge is straightforward: We need to understand what macroeconomic risks underlie the “factor risk premia” that finance research uses to crystallize the cross section of assets. A current list might include the value and size premiums, the momentum premium"

"Having said “macroeconomics”, “risk” and “asset prices”, the reader will quickly spot a missing ingredient: money”

Zhang’s (2005) necessary condition for value premium to be explained by financial frictions: "As value stocks are typically in distress, if a credit crunch comes along, these stocks will do very badly and hence are risky"
Effects on asset prices

- Using a DDM, monetary tightening increases the *discount rate* and lowers *expectations on future cash flows* (Smirlock and Yawitz, 1985)
Effects on asset prices

- Using a DDM, monetary tightening increases the discount rate and lowers expectations on future cash flows (Smirlock and Yawitz, 1985).

- Recent contribution: Risk premia are affected by monetary policy shocks (Bernanke and Kuttner, 2005), possibly in a different manner in the cross-section of stocks:

\[
P_{i,t} = E_t \left[\sum_{j=1}^{\infty} \left(\frac{1}{1 + r_f + r_p} \right)^j D_{i,t+j} \right]
\]
Effects on asset prices

- Using a DDM, monetary tightening increases the *discount rate* and lowers *expectations on future cash flows* (Smirlock and Yawitz, 1985)

- Recent contribution: *Risk premia* are affected by monetary policy shocks (Bernanke and Kuttner, 2005), possibly in a different manner in the cross-section of stocks:

\[P_{i,t} = E_t \left[\sum_{j=1}^{\infty} \left(\frac{1}{1 + r^f + r^p_i} \right)^j D_{i,t+j} \right] \]

- Bernanke-Kuttner untested conjecture: Investors potentially *overreact* to monetary policy shocks
Our contribution

- Document the differential impact of monetary policy shocks on portfolios’ returns constructed on the basis of size, value proxies and stocks’ past performance

Reveal the multi-period impact of monetary policy shocks on these portfolios’ returns

Examine the stability over time of the relationship between monetary policy shocks and stock returns

Link these findings to the traditional and more recent transmission channels suggested in the literature
Our contribution

- Document the differential impact of monetary policy shocks on portfolios’ returns constructed on the basis of size, value proxies and stocks’ past performance
- Reveal the *multi-period impact* of monetary policy shocks on these portfolios’ returns
Our contribution

- Document the differential impact of monetary policy shocks on portfolios’ returns constructed on the basis of size, value proxies and stocks’ past performance
- Reveal the *multi-period impact* of monetary policy shocks on these portfolios’ returns
- Examine the *stability over time* of the relationship between monetary policy shocks and stock returns
Our contribution

- Document the differential impact of monetary policy shocks on portfolios' returns constructed on the basis of size, value proxies and stocks’ past performance.

- Reveal the multi-period impact of monetary policy shocks on these portfolios’ returns.

- Examine the stability over time of the relationship between monetary policy shocks and stock returns.

- Link these findings to the traditional and more recent transmission channels suggested in the literature.
Macro variables: Industrial production growth (ipn), inflation rate (inf), commodity price index growth ($gcom$), change in the Fed Funds rate ($dfedm$), orthogonalized non-borrowed reserves ($strongin$)
Data

- Macro variables: Industrial production growth (ipn), inflation rate (inf), commodity price index growth ($gcom$), change in the Fed Funds rate ($dfedm$), orthogonalized non-borrowed reserves ($strongin$)

- Source: FRED and IMF International Financial Statistics
Macro variables: Industrial production growth (ipn), inflation rate (inf), commodity price index growth ($gcom$), change in the Fed Funds rate ($dfedm$), orthogonalized non-borrowed reserves ($strongin$)

Source: FRED and IMF International Financial Statistics

Monthly returns of portfolios constructed on the basis of: Size, CF/P, D/P, B/M, E/P, Long-term reversal ($t - 60$ to $t - 13$), Short-term reversal ($t - 1$) and Momentum ($t - 12$ to $t - 2$)
Data

- Macro variables: Industrial production growth \((ipn)\), inflation rate \((inf)\), commodity price index growth \((gcom)\), change in the Fed Funds rate \((dfedm)\), orthogonalized non-borrowed reserves \((strongin)\)

- Source: FRED and IMF International Financial Statistics

- Monthly returns of portfolios constructed on the basis of: Size, CF/P, D/P, B/M, E/P, Long-term reversal \((t - 60 \text{ to } t - 13)\), Short-term reversal \((t - 1)\) and Momentum \((t - 12 \text{ to } t - 2)\)

- Source: Kenneth French’s online data library
Data

- Macro variables: Industrial production growth \((ipn)\), inflation rate \((inf)\), commodity price index growth \((gcom)\), change in the Fed Funds rate \((dfedm)\), orthogonalized non-borrowed reserves \((strongin)\).

- Source: FRED and IMF International Financial Statistics.

- Monthly returns of portfolios constructed on the basis of: Size, CF/P, D/P, B/M, E/P, Long-term reversal \((t – 60 \ to \ t – 13)\), Short-term reversal \((t – 1)\) and Momentum \((t – 12 \ to \ t – 2)\).

- Source: Kenneth French’s online data library.

Econometric Methodology

- Macro-based Vector Autoregression model of order p:

$$y_t = \sum_{i=1}^{p} \Phi_i y_{t-i} + \varepsilon_t$$

where the endogenous variables’ vector is:

$$y_t = [ipn \ inf \ gcom \ dfedm \ strongin \ return]'$$
Econometric Methodology

- Macro-based Vector Autoregression model of order p:

$$y_t = \sum_{i=1}^{p} \Phi_i y_{t-i} + \varepsilon_t$$

where the endogenous variables’ vector is:

$$y_t = [ipn inf gcom dfedm strongin return]'$$

- Generalized Impulse Responses (Pesaran and Shin, 1998)- invariant to variables’ ordering
Econometric Methodology

- Macro-based Vector Autoregression model of order p:

$$y_t = \sum_{i=1}^{p} \Phi_i y_{t-i} + \varepsilon_t$$

where the endogenous variables’ vector is:

$$y_t = [ipn \ inf \ gcom \ dfedm \ strongin \ return]'$$

- Generalized Impulse Responses (Pesaran and Shin, 1998)- invariant to variables’ ordering

- Akaike Information Criterion (AIC) for lag length selection
Econometric Methodology

- Macro-based Vector Autoregression model of order p:
 \[
y_t = \sum_{i=1}^{p} \Phi_i y_{t-i} + \varepsilon_t
 \]
 where the endogenous variables’ vector is:
 \[
y_t = [ipn \text{ inf } gcom \text{ dfedm strongin return}]'
 \]

- Generalized Impulse Responses (Pesaran and Shin, 1998)- invariant to variables’ ordering

- Akaike Information Criterion (AIC) for lag length selection

- Candelon and Lutkepohl (2001) Chow-type test for structural stability
Initial period impulse responses: 1967-2007

<table>
<thead>
<tr>
<th>Sorting criterion for portfolios</th>
<th>Low Decile Portfolio</th>
<th>High Decile Portfolio</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Impulse Response</td>
<td>Av. Returns (p.a.)</td>
</tr>
<tr>
<td>Book-to-market value</td>
<td>-0.51 ** (0.24)</td>
<td>10.01%</td>
</tr>
<tr>
<td>Cash flow-to-price</td>
<td>-0.46 * (0.25)</td>
<td>10.18%</td>
</tr>
<tr>
<td>Earnings-to-price</td>
<td>-0.48 * (0.26)</td>
<td>10.16%</td>
</tr>
<tr>
<td>Dividend-to-price</td>
<td>-0.51 ** (0.25)</td>
<td>11.39%</td>
</tr>
<tr>
<td>Market value</td>
<td>-0.66 ** (0.28)</td>
<td>14.85%</td>
</tr>
</tbody>
</table>
Initial period impulse responses: 1967-2007

<table>
<thead>
<tr>
<th></th>
<th>Smallest size quintile</th>
<th>Highest size quintile</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Impulse Response</td>
<td>Av. Returns (p.a.)</td>
</tr>
<tr>
<td>Lowest book-to-market value ratio quintile</td>
<td>-0.65 * (0.36)</td>
<td>8.12%</td>
</tr>
<tr>
<td>Highest book-to-market value ratio quintile</td>
<td>-0.84 ** (0.25)</td>
<td>19.44%</td>
</tr>
</tbody>
</table>
Initial period impulse responses: 1967-2007

<table>
<thead>
<tr>
<th>Sorting criterion for portfolios</th>
<th>Low Decile Portfolio</th>
<th>High Decile Portfolio</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Impulse Response</td>
<td>Av. Returns (p.a.)</td>
</tr>
<tr>
<td>Returns during months t-60 to t-13</td>
<td>-0.80 ** (0.29)</td>
<td>16.26%</td>
</tr>
<tr>
<td>Returns during months t-12 to t-2</td>
<td>-0.71 ** (0.34)</td>
<td>1.48%</td>
</tr>
<tr>
<td>Returns at month t-1</td>
<td>-0.81 ** (0.32)</td>
<td>12.91%</td>
</tr>
</tbody>
</table>
Multi-period impulse responses: Growth vs Value

Panel A: Low book-to-market value decile portfolio

Panel B: High book-to-market value decile portfolio
Results: Multi-period impulse responses

Panel A: Small size and growth quintile portfolio

Panel B: Small size and value quintile portfolio

Panel C: Big size and growth quintile portfolio

Panel D: Big size and value quintile portfolio
Panel A: 1967.01-1982.12

<table>
<thead>
<tr>
<th>Sorting criterion for portfolios</th>
<th>Low Decile Portfolio</th>
<th>High Decile Portfolio</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Impulse Response</td>
<td>Av. Returns (p.a.)</td>
</tr>
<tr>
<td>Book-to-market value</td>
<td>-0.78 * (0.40)</td>
<td>7.32%</td>
</tr>
<tr>
<td>Earnings-to-price</td>
<td>-0.84 ** (0.42)</td>
<td>7.11%</td>
</tr>
<tr>
<td>Market value</td>
<td>-1.01 ** (0.50)</td>
<td>17.52%</td>
</tr>
</tbody>
</table>

Panel B: 1983.01-2007.12

<table>
<thead>
<tr>
<th>Sorting criterion for portfolios</th>
<th>Low Decile Portfolio</th>
<th>High Decile Portfolio</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Impulse Response</td>
<td>Av. Returns (p.a.)</td>
</tr>
<tr>
<td>Book-to-market value</td>
<td>-0.26 (0.29)</td>
<td>11.81%</td>
</tr>
<tr>
<td>Earnings-to-price</td>
<td>-0.27 (0.33)</td>
<td>12.20%</td>
</tr>
<tr>
<td>Market value</td>
<td>-0.26 (0.32)</td>
<td>13.13%</td>
</tr>
</tbody>
</table>
Robustness checks

- Cholesky decomposition based impulse responses
Robustness checks

- Cholesky decomposition based impulse responses

- Alternative lag length selection criteria (e.g. Lutkepohl’s sequential LR test)
Robustness checks

- Cholesky decomposition based impulse responses
- Alternative lag length selection criteria (e.g. Lutkepohl’s sequential LR test)
- Real portfolio returns
Robustness checks

- Cholesky decomposition based impulse responses
- Alternative lag length selection criteria (e.g. Lutkepohl’s sequential LR test)
- Real portfolio returns
- Excess portfolio returns
Robustness checks

- Cholesky decomposition based impulse responses
- Alternative lag length selection criteria (e.g. Lutkepohl’s sequential LR test)
- Real portfolio returns
- Excess portfolio returns
- Alternative augmented VAR specifications to account for commonly used risk factors (Fama-French, Carhart, Chen-Zhang), e.g.

\[
y_t = [ipn \ inf \ gcom \ dfedm \ strongin \ xmark \ smb \ hml \ mom \ return]'
\]

\[
y_t = [ipn \ inf \ gcom \ dfedm \ strongin \ xmark \ roa \ ia \ return]'
\]
Conclusions

- Small cap stocks more sensitive than big cap stocks to monetary policy shocks
 -> evidence for bank lending channel
Conclusions

- Small cap stocks more sensitive than big cap stocks to monetary policy shocks
 - Evidence for bank lending channel

- Value stocks more sensitive than growth stocks
 - Evidence for balance sheet channel

There are lagged effects from monetary policy shocks
- Underreaction over time

Robust evidence that these are not one-off effects as a fully efficient market would imply
Conclusions

- Small cap stocks more sensitive than big cap stocks to monetary policy shocks
 - evidence for bank lending channel

- Value stocks more sensitive than growth stocks
 - evidence for balance sheet channel

- Full sample results supportive of the risk premium argument
Conclusions

- Small cap stocks more sensitive than big cap stocks to monetary policy shocks
 - > evidence for bank lending channel

- Value stocks more sensitive than growth stocks
 - > evidence for balance sheet channel

- Full sample results supportive of the risk premium argument

- Past losers more sensitive than past winners
 - > support for excess sensitivity conjecture (no risk premium story)
Conclusions

- Small cap stocks more sensitive than big cap stocks to monetary policy shocks
 - evidence for bank lending channel

- Value stocks more sensitive than growth stocks
 - evidence for balance sheet channel

- Full sample results supportive of the risk premium argument

- Past losers more sensitive than past winners
 - support for excess sensitivity conjecture (no risk premium story)

- There are lagged effects from monetary policy shocks
 - underreaction over time
Conclusions

- Small cap stocks more sensitive than big cap stocks to monetary policy shocks
 -> evidence for bank lending channel

- Value stocks more sensitive than growth stocks
 -> evidence for balance sheet channel

- Full sample results supportive of the risk premium argument

- Past losers more sensitive than past winners
 -> support for excess sensitivity conjecture (no risk premium story)

- There are lagged effects from monetary policy shocks
 -> underreaction over time

- Robust evidence that these are not one-off effects as a fully efficient market would imply
Conclusions

- End of 1982 identified as a breakpoint in the relationship between monetary policy shocks and portfolio returns
Conclusions

- End of 1982 identified as a breakpoint in the relationship between monetary policy shocks and portfolio returns
- Related to the accomplishment of Volcker’s mission against inflation
Conclusions

- End of 1982 identified as a breakpoint in the relationship between monetary policy shocks and portfolio returns
- Related to the accomplishment of Volcker’s mission against inflation
- Differential impact across size portfolios disappears post-1983, along with the size premium
Conclusions

- End of 1982 identified as a breakpoint in the relationship between monetary policy shocks and portfolio returns
- Related to the accomplishment of Volcker’s mission against inflation
- Differential impact across size portfolios disappears post-1983, along with the size premium
- Differential impact across past performance-sorted portfolios disappears post-1983
Conclusions

- End of 1982 identified as a breakpoint in the relationship between monetary policy shocks and portfolio returns
- Related to the accomplishment of Volcker’s mission against inflation
- Differential impact across size portfolios disappears post-1983, along with the size premium
- Differential impact across past performance-sorted portfolios disappears post-1983
- Differential impact across value portfolios much smaller post-1983
Conclusions

- End of 1982 identified as a breakpoint in the relationship between monetary policy shocks and portfolio returns
- Related to the accomplishment of Volcker’s mission against inflation
- Differential impact across size portfolios disappears post-1983, along with the size premium
- Differential impact across past performance-sorted portfolios disappears post-1983
- Differential impact across value portfolios much smaller post-1983
- Monetary policy transmission channels may become inactive in some periods