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Motivation and Related Literature

Starting from Merton (1973), asset allocation literature examines the
impact of horizon e¤ects on risky assets�demand

Portfolio choice of multi-period risk-averse investor includes a hedging
demand component in addition to the myopic one à la Markowitz

Hedging demand arises due to investor�s desire to hedge against
adverse shocks to the underlying state variables

This issue becomes particularly important if returns are predictable
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Motivation and Related Literature

Most of existing studies focus on stock-only portfolios (e.g. Campbell
and Viceira, 1999, Barberis, 2000, Wachter, 2002)

Commonly used predictors/ underyling stochastic factors: interest
rate, dividend yield and Sharpe ratio

But evidence on stock returns�predictability is rather weak (e.g.
Goyal and Welch, 2008)

On the other hand, bond yields are more reliably predictable by
macroeconomic variables (Ang and Piazzesi, 2003)
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Motivation and Related Literature

Rather few studies on intertemporal bond portfolio choice

Notable exceptions:

Campbell and Viceira (2001), Brennan and Xia (2002), Munk and
Sorensen (2004): Constant premia- expectations hypothesis

Sangvinatsos and Wachter (2005), Koijen, Nijman and Werker
(2009): Time-varying bond premia but latent factors in their term
structure models are not economic variables per se

Theoretical treatment: Wachter (2003), Liu (2007)
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This paper

We use the macro-�nance term structure model of Dewachter, Lyrio
and Maes (2006) to examine intertemporal bond portfolio choice for a
power utility investor

Hence, we allow for time-varying risk premia
->Capture the failure of expectations hypothesis (Cochrane and
Piazzesi, 2005)
->Both myopic and hedging demands depend on the underlying
macroeconomic conditions

Explicitly utilize macroeconomic information for asset allocation
(neglected in the literature)

There are 5 macroeconomic factors -> examine portfolio choice
among multiple bonds with di¤erent maturities
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This paper

Our setup also enables us to introduce real (in�ation-linked) bonds in
investor�s asset menu

Examine the diversi�cation and hedging value of real bonds for a
multi-period risk-averse investor

Evaluate the term structure model of Dewachter et al. (2006) from
an asset allocation perspective
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Risk factors

Setup of Dewachter et al. (2006): 5 stochastically time-varying risk
factors: output gap y , in�ation rate π, real interest rate ρ, in�ation
central tendency π� and central tendency of real interest rate ρ�.
Dynamics given by the following SDEs:

dy = [κyy y + κyπ(π � π�) + κy ρ(ρ� ρ�)]dt + σydwy

dπ = [κπy y + κππ(π � π�) + κπρ(ρ� ρ�)]dt + σπdwπ

dρ = [κρy y + κρπ(π � π�) + κρρ(ρ� ρ�)]dt + σρdwρ

dπ� = κπ�π�(π
� � θπ�)dt + σπ�dwπ�

dρ� = κρ�ρ�(ρ
� � θρ�)dt + σρ�dwρ�

Collect them in X = (y ,π, ρ,π�, ρ�):

dX = [ψ̄+KX ]dt + Sdw
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Bond returns dynamics

In the spirit of Du¤ee (2002), market price of risk is time-varying and
a¢ ne in risk factors, ξ = SΛ+ S�1ΞX

The price of a zero-coupon default-free nominal bond at time t
maturing at time t + τ � T is given by:

P(X , t) = exp(�a(τ)� b(τ)TX )

No-arbitrage pricing dictates that returns�dynamics of the
zero-coupon bond i are given by:

dPi
Pi

= (r � b(τ)T S2Λ� b(τ)TΞX )dt � b(τ)T Sdw
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Implications from estimated term structure model

In�ation and real rate a¤ect only very short maturities. Almost
negligible impact beyond 2-y maturity. Similar the case of output gap

Central tendency of in�ation has a dominant impact on bonds�yields
for longer than 2-y maturities (similar to a "level" factor)

Filtered series: in�ation central tendency exhibits very low volatility
and it is highly persistent

Considerable time-variation + strong co-movement in bonds�expected
returns (mainly via in�ation central tendency). "Reasonable" premia
wrt previous studies (e.g. Sangvinatsos and Wachter, 2005)
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Bonds�expected excess returns

EXPECTED EXCESS RETURNS OF NOMINAL BONDS UNDER THE NOMINAL SDF
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Bond returns�covariance and correlation structure

Panel A: Covariance Matrix
1­year 2­year 3­year 5­year 7­year 10­year

1­year 0.0004
2­year 0.0007 0.0014
3­year 0.0009 0.0019 0.0026
5­year 0.0013 0.0026 0.0037 0.0054
7­year 0.0016 0.0032 0.0046 0.0069 0.0088

10­year 0.0019 0.0041 0.0058 0.0058 0.0115 0.0153
Panel B: Correlation Matrix

1­year 2­year 3­year 5­year 7­year 10­year
1­year 1
2­year 0.974 1
3­year 0.947 0.994 1
5­year 0.897 0.964 0.987 1
7­year 0.848 0.927 0.961 0.993 1

10­year 0.782 0.871 0.916 0.968 0.991 1

Very low variances at short maturities -> Very high Sharpe ratios.
Extremely high correlation for near maturities.
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Intertemporal portfolio choice

Use the martingale methodology (Cox and Huang, 1989) to solve the
intertemporal portfolio choice problem. The long-term investor
maximizes power utility over REAL terminal wealth:

maxEt0

(
(WT

ΠT
)1�γ

1� γ

)
, 0 < γ 6= 1

s.t. Et0 [mTWT ] = Wt0

where m is the unique nominal pricing kernel under complete markets

Dynamics for price level process Π:

dΠ
Π
= πdt + σTΠdw
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Calculating the optimal portfolio

Subject to conditions, optimal portfolio choice is given by:

φt =
1
γ
(BT S2B)�1(�BT S2Λ� BTΞXt )

+(1� 1
γ
)(BT S2B)�1(�BT S)σΠ

+
1
γ
(BT S2B)�1(�BT S)S [d(t) + 1

2
(Q(t) +Q(t)T )Xt ]

with d(t) and Q(t) satisfying a system of ODEs

The remainder φ0 = 1� iT φ is invested in the nominal
instantaneously riskless asset yielding the risk-free rate r
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Optimal portfolio choice

First two terms compose the myopic component à la Markowitz

Second term arises because the investor seeks to maximize utility over
real wealth having access to nominal bonds

Third term provides the hedging demand component à la Merton

2 interesting observations:

1 Hedging demand depends on the di¤usion coe¤ of risk factors�
dynamics as well as the sensitivity of investor�s wealth to the risk
factors, represented by d(t) and Q(t).

2 Both myopic and hedging bond demands induce market timing, i.e.
portfolio choice depends on the current level of risk factors.
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Incomplete markets

In case investor allocates his wealth among less than 5 zero-coupon
bonds, we resort to incomplete markets (risky assets< risk factors)

Employ He and Pearson (1991) methodology for incomplete markets

We examine the case of 2, 3 or 4 bonds (plus the risk-free asset) in
the asset menu

Methodological note: Incompleteness in our setup arises only due to
the number of bonds

When no. bonds= no. risk factors-> complete markets because
in�ation is an explicit risk factor (so shocks to price level process Π
can be hedged too)
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in�ation is an explicit risk factor (so shocks to price level process Π
can be hedged too)
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Introducing real bonds

Since in�ation rate is a risk factor, we can price+ introduce real
bonds in the asset menu (yielding real risk free rate under Q)

Dynamics of real SDF, M = mΠ, given by:

dM
M

=
d(mΠ)
mΠ

= �(r � π + σTΠξ)dt � (ξ � σΠ)
T dw

Returns�dynamics of real zero-coupon bond i given by:

dPRi
PRi

= (r � π + σTΠξ � bR (τ)T Sξ + bR (τ)T SσΠ)dt � bR (τ)T Sdw

Intertemporal portfolio choice problem among real or among
nominal+ real bonds solved using the same techniques
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Real bonds�excess returns

EXPECTED EXCESS RETURNS OF REAL BONDS UNDER THE REAL SDF
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Real bonds�excess returns turn negative (puzzling for myopic
risk-averse investor). Signi�cant time-variation+ strong co-movement
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Portfolio choice among two nominal bonds

Panel A: Benchmark case 1975:Q1
γ =4 γ =10

Premia T=0 T=3 T=5 T=10 T=0 T=3 T=5 T=10
3­yr 0.65% 0.05 5.17 4.66 1.94 0.03 3.79 3.88 2.01

10­yr 1.71% 0.26 0.29 1.28 3.12 0.10 0.02 0.63 2.12
Panel B: One St. dev. increase in inflation central tendency

γ =4 γ =10
Premia T=0 T=3 T=5 T=10 T=0 T=3 T=5 T=10

3­yr 0.88% 0.84 9.39 8.77 5.47 0.35 6.07 6.13 3.82
10­yr 1.96% 0.002 ­0.24 0.94 3.15 ­0.004 ­0.23 0.52 2.32

Panel C: One St. dev. decrease in inflation central tendency
γ =4 γ =10

Premia T=0 T=3 T=5 T=10 T=0 T=3 T=5 T=10
3­yr 0.42% ­0.74 0.94 0.56 ­1.59 ­0.28 1.52 1.64 0.19

10­yr 1.46% 0.52 0.82 1.62 3.09 0.20 0.26 0.74 1.91
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Results

This term structure model induces considerable hedging demands
dominating myopic ones (hedging motive stronger than myopic
investment)

Shifts in the macroeconomy (in particular in�ation central tendency)
a¤ect bonds�premia and hence change myopic and hedging demands

Allocation among bonds changes with investment horizon- investor
attempts to combine bonds�maturities so as to match his investment
horizon+ hedge shocks to his real wealth process
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Sensitivity analysis (2 bonds, RRA=10, T=3 and 10 years)

TOTAL MYOPIC AND HEDGING DEMANDS FOR 2 NOMINAL BONDS
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Implausibly high myopic and hedging demands due to high Sharpe
ratios and extremely low variances of risk factors

Alex Kostakis () EFA 2009 (Bergen) 20th August 2009 21 / 25



Portfolio choice among three bonds

Panel A: Three nominal bonds (nominal SDF) 1975:Q1
γ =4 γ =10

Premia T=0 T=1 T=5 T=10 T=0 T=1 T=5 T=10
1­yr (N) 0.20% 1.74 0.73 ­5.96 ­3.89 0.14 ­0.25 ­5.77 ­4.31
5­yr (N) 0.91% ­1.61 1.27 8.66 4.09 ­0.27 1.53 8.08 4.74
10­yr (N) 1.71% 0.99 ­0.07 ­1.07 2.13 0.25 ­0.42 ­1.66 0.91

Panel B: Three real bonds (real SDF) 1975:Q1
γ =4 γ =10

Premia T=0 T=1 T=5 T=10 T=0 T=1 T=5 T=10
1­yr (R) 0.34% 29.69 31.68 30.51 31.71 11.87 13.42 12.52 13.40
5­yr (R) ­1.37% ­12.96 ­13.45 ­15.90 ­20.92 ­5.18 ­5.44 ­6.64 ­10.67

10­yr (R) ­1.59% 3.83 4.47 9.46 13.76 1.53 1.87 5.13 8.78
Panel C: Three nominal and real bonds under the nominal SDF 1975:Q1

γ =4 γ =10
Premia T=0 T=1 T=5 T=10 T=0 T=1 T=5 T=10

1­yr (N) 0.20% 2.98 4.71 4.81 2.28 0.87 2.00 1.99 1.17
5­yr (R) ­0.84% ­1.42 ­0.99 0.83 ­0.37 ­0.46 ­0.14 1.08 0.63

10­yr (N) 1.71% 0.60 0.63 3.15 3.74 0.23 0.23 1.30 2.43
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Results

Increasing the number of bonds in the menu, high correlation leads to
extreme portfolio choices (small di¤erences in premia are magni�ed)

Hedging demands are also extreme due to huge wealth sensitivities at
low levels of RRA and long horizons

Investor again combines bonds�maturities so as to match his horizon

Real bonds useful for both diversi�cation (lower correlation with
nominal bonds) and hedging (better hedge against shocks to real
wealth process)

For the in�nitely long-term risk averse investor with utility over real
terminal wealth, the only risk-free asset is the zero-coupon bond
whose maturity matches his horizon
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Conclusions

Term structure models focus on �tting bond yields+ predicting
premia. They neglect implied covariance structure of bond returns

Serious failure from an asset allocation perspective because they
imply extremely high risky assets�demands

Parameter uncertainty potential way out

Failure of the expectation hypothesis induces considerable market
timing for a myopic investor
+ great hedging demands for a multi-period risk averse investor

Macroeconomic information particularly important for bond investors
-> incorporate it in portfolio choice context (e.g. the life-cycle model
of Koijen et al. (2009))
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Thank you for attending!
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